Navigation by alphabet

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Damage, sources of heat exchangers Damkohler number: Damping: Davis and Anderson criterion, for onset of nucleate boiling, Decal, heat transfer medium, Decane: 1-Decanol: 1-Decene: Degradation temperature, of polymers, Demisters, wire mesh, for multistage flash evaporators, Dengler and Addoms correlation, for forced convective heat transfer in two-phase flow, Density: Deposition of droplets in annular flow Deposition in fouling, Desalination plants: Desuperheaters for use in association with evaporators, Developing flow in ducts: Dew-poin corrosion, Diathermanous fluid, 1,1-Dibromoethane: Dibromomethane: 1,2-Dibromotetrafluoroethane (Refrigerant 114B2): Dibutylamine: Dibutyl ether: Dichloroacetic acid: o-Dichlorobenzene: Dichlorodifluoromethane (see Refrigerant 12) 1,1-Dichloroethane (Refrigerant 150a): 1,2-Dichloroethane (Refrigerant 150): 1,1-Dichloroethylene: cis-1,2-Dichloroethylene: trans-1,2-Dichloroethylene: Dichlorofluoromethane (see Refrigerant 21) Dichloromethane (Refrigerant 30): 1,2-Dichlorotetrafluoroethane (Refrigerant 114) 1,2,3-Dichlorotrifluoroethane (Refrigerant 123) Dielectric constant, of water, Diethylamine: n,n-Diethylaniline: Diethylene glycol: Diethyl ether: Diethyl ketone: Diethylsulfide: Differential condensation: Differential formulations for nonisothermal gas radiation, Differential resistance term in heat exchanger design, Differential vector operators in heat conduction, Diffraction models for radiative heat transfer from surfaces, Diffuse surfaces, radiative heat transfer between, Diffuse wall passages, radiative heat transfer in, Diffusers, single-phase flow and pressure drop in, Diffusion, in multi-component condensation, n,n-Diffusion coefficients: 1,1-Difluoroethane (Refrigerant 152a): Difluoromethane (Refrigerant 32): Diiodomethane: Diisobutylamine: Diisopropylamine: Diisopropylether: Dimensional analysis: Dimensionless groups: Dimethylacetylene: Dimethylamine: Dimethylaniline: 2,2-Dimethylbutane: 2,3-Dimethylbutane: 1,1-Dimethylcyclopentane: Dimethylether: Dimethylketone: 2,2-Dimethylpropane (neopentane): Dimethylsulfide: Dimpled surfaces, heat exchangers with, 1,4-Dioxane: Diphenyl: Diphenylamine: Diphenylether: Diphenylmethane: Dipropyl ether: Diisopropyl ether: Dipropyl ketone: Direct contact heat exchangers Direct contact heat transfer, Direct numerical simulation, of turbulence, Dirichlet boundary condition, finite difference method, Dished heads: Discretization in numerical analysis: Disk-and-doughnut baffled heat exchangers, Disks, free convective heat transfer from inclined, Dispersants, for fouling control, Dispersed flow (liquid-liquid), Dissipation of turbulent energy, Distillation: Distribution: Dittus-Boelter equation, for single-phase forced convective heat transfer, Dividing flow, loss coefficients in, Dodecane: 1-Dodecene: Donohue method, for shell-side heat transfer in shell-and-tube heat exchangers, Double-pipe heat exchangers: Double segmental baffled heat exchangers, Downward facing surfaces, free convective heat transfer from, Downward flow in vertical tubes, flow patterns in gas/liquid, Dowtherm A: Dowtherm J: Dowtherms, as heat transfer media, Drag coefficient: Drag force: Drag reduction, Drainage, of condensate, Dreitser, G, Drift flux model for two-phase flows, Drogemuller, P, Droplets: Dropwise condensation Dry wall desuperheating (in condensation), Dryers: Drying loft, Drying rates, prediction of, Dryout: Ducts, single-phase fluid flow and pressure drop in, Duplex stainless steels, Durand correlation for heterogeneous conveyance in solid/liquid flow, Dynamically stable foam, Dyphyl, heat transfer media, Dzyubenko, B,

Index

HEDH
A B C D
Damage, sources of heat exchangers Damkohler number: Damping: Davis and Anderson criterion, for onset of nucleate boiling, Decal, heat transfer medium, Decane: 1-Decanol: 1-Decene: Degradation temperature, of polymers, Demisters, wire mesh, for multistage flash evaporators, Dengler and Addoms correlation, for forced convective heat transfer in two-phase flow, Density: Deposition of droplets in annular flow Deposition in fouling, Desalination plants: Desuperheaters for use in association with evaporators, Developing flow in ducts: Dew-poin corrosion, Diathermanous fluid, 1,1-Dibromoethane: Dibromomethane: 1,2-Dibromotetrafluoroethane (Refrigerant 114B2): Dibutylamine: Dibutyl ether: Dichloroacetic acid: o-Dichlorobenzene: Dichlorodifluoromethane (see Refrigerant 12) 1,1-Dichloroethane (Refrigerant 150a): 1,2-Dichloroethane (Refrigerant 150): 1,1-Dichloroethylene: cis-1,2-Dichloroethylene: trans-1,2-Dichloroethylene: Dichlorofluoromethane (see Refrigerant 21) Dichloromethane (Refrigerant 30): 1,2-Dichlorotetrafluoroethane (Refrigerant 114) 1,2,3-Dichlorotrifluoroethane (Refrigerant 123) Dielectric constant, of water, Diethylamine: n,n-Diethylaniline: Diethylene glycol: Diethyl ether: Diethyl ketone: Diethylsulfide: Differential condensation: Differential formulations for nonisothermal gas radiation, Differential resistance term in heat exchanger design, Differential vector operators in heat conduction, Diffraction models for radiative heat transfer from surfaces, Diffuse surfaces, radiative heat transfer between, Diffuse wall passages, radiative heat transfer in, Diffusers, single-phase flow and pressure drop in, Diffusion, in multi-component condensation, n,n-Diffusion coefficients: 1,1-Difluoroethane (Refrigerant 152a): Difluoromethane (Refrigerant 32): Diiodomethane: Diisobutylamine: Diisopropylamine: Diisopropylether: Dimensional analysis: Dimensionless groups: Dimethylacetylene: Dimethylamine: Dimethylaniline: 2,2-Dimethylbutane: 2,3-Dimethylbutane: 1,1-Dimethylcyclopentane: Dimethylether: Dimethylketone: 2,2-Dimethylpropane (neopentane): Dimethylsulfide: Dimpled surfaces, heat exchangers with, 1,4-Dioxane: Diphenyl: Diphenylamine: Diphenylether: Diphenylmethane: Dipropyl ether: Diisopropyl ether: Dipropyl ketone: Direct contact heat exchangers Direct contact heat transfer, Direct numerical simulation, of turbulence, Dirichlet boundary condition, finite difference method, Dished heads: Discretization in numerical analysis: Disk-and-doughnut baffled heat exchangers, Disks, free convective heat transfer from inclined, Dispersants, for fouling control, Dispersed flow (liquid-liquid), Dissipation of turbulent energy, Distillation: Distribution: Dittus-Boelter equation, for single-phase forced convective heat transfer, Dividing flow, loss coefficients in, Dodecane: 1-Dodecene: Donohue method, for shell-side heat transfer in shell-and-tube heat exchangers, Double-pipe heat exchangers: Double segmental baffled heat exchangers, Downward facing surfaces, free convective heat transfer from, Downward flow in vertical tubes, flow patterns in gas/liquid, Dowtherm A: Dowtherm J: Dowtherms, as heat transfer media, Drag coefficient: Drag force: Drag reduction, Drainage, of condensate, Dreitser, G, Drift flux model for two-phase flows, Drogemuller, P, Droplets: Dropwise condensation Dry wall desuperheating (in condensation), Dryers: Drying loft, Drying rates, prediction of, Dryout: Ducts, single-phase fluid flow and pressure drop in, Duplex stainless steels, Durand correlation for heterogeneous conveyance in solid/liquid flow, Dynamically stable foam, Dyphyl, heat transfer media, Dzyubenko, B,
E F G H I J K L M N O P Q R S T U V W X Y Z

Transport Properties of Fluids at Elevated Pressures

DOI 10.1615/hedhme.a.000537

5.5 PHYSICAL PROPERTY DATA TABLES 5.5.10 Properties of liquids at temperatures below their boiling points

5.5 PHYSICAL PROPERTY DATA TABLES
5.5.14 Transport Properties of Fluids at Elevated Pressures

In previous sections of this book (Section 524 and Section 533) the transport properties (viscosity and thermal conductivity) of various liquids and gases have been given at saturation pressure and temperature, or at atmospheric pressure and temperature, or at atmospheric pressure (Section 534). However, the effect of pressure is considerable, and this section gives a selection of data for various substances at elevated pressure. The boiling point is given in Kelvins for each pressure to mark the change from liquid to vapour.

The tables are reproduced from the best sets currently available in the literature, and the sources are given. The tables for almost all substances in previous editions have been completely revised.

Data are presented for the following substances:

... You need a subscriptionOpen in a new tab. to view the full text of the article. If you already have the subscription, please login here