Navigation by alphabet

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Packaged units, specification of, Packing characteristic, in cooling towers, Packings, for cooling towers Packings, for fixed beds: Packinox heat exchanger, Paints, spectral characteristics of reflectance of surfaces treated with, Palen, J W Panchal, C B, Paraffins, normal and isonormal: Paraldehyde: Parallel channel instability, in condensers, Partial boiling in subcooled forced convective heat transfer, Participating media, radiation interaction in, Particle convective component, in heat transfer from fluidized beds, Particle emissivity, Particle Reynolds number in fixed beds, Particles: Particulate fluidization, Particulate fouling, Pass arrangements, in plate heat exchangers, Passes, tube side, Passive methods, for augmentation of heat transfer, passive systems for: PD5500 mechanical design of shell-and-tube heat exchangers to, Peacock, D K, Pearson number, Peclet number Peng-Robinson equation of state, application to hydrocarbons, Penner's rule, in absorption of radiation by gases, Pentachloroethane (Refrigerant 120): Pentadecane: Pentadecene: Pentadiene 1, 2: Pentadiene 1, trans 3: Pentadiene 1, 4: Pentadiene 2-3: Pentafluoroethane (Refrigerant 125) Pentamethylbenzene: Pentane: Pentanoic acid: 1-Pentanol: 1-Pentene: cis-2-Pentene: trans-2-Pentene: Pentylacetate: Pentylbenzene: Pentylcyclohexane: Pentylcyclopentane: Pentylcyclopropane, liquid properties, Perforated fins, in plate fin heat exchangers, Perforated plates, loss coefficients in, Periodic operation, of regenerator, Periodic variations in temperature, thermal conduction in bodies with, PFR correlation, for heat transfer in high fin tube banks, Pharmaceutical industry, fouling of heat exchangers in, Phase change materials, in augmentation of heat transfer, Phase change number, Phase equilibrium: Phase inversion Phase separation, as source of corrosion problems, Phenol: Phenols: Phenylhydrazine: Phonons, in thermal conductivity of solids, Phosgene: Physical properties: Pi theorum, in dimensional analysis, Pinch analysis, for heat exchanger network design, Pioro, I L Pioro, LS, Pipe leads, Piperidine: Pipes, circular: Pipes, noncircular: Piping components: Pitting corrosion, in stainless steels, Planck's constant, Planck's law, for spectral distribution of blackbody radiation, Plane shells, steady-state thermal conduction in, Plastic deformation Plate fin heat exchangers Plate fins, efficiency, Plate heat exchangers: Plate evaporator Plates: Plug flow: Plug flow model, for furnaces, Pneumatic conveyance, Pneumatic conveying dryer, P-NTU method: Polarization, of thermal radiation, Polyglycols, as heat transfer media, Polymers: Pool boiling, Porous surfaces: Port arrangements, in plate heat exchangers, Portable fouling unit, Poskas, P, Postdryout heat transfer: Powders: Power law fluid (non-Newtonian), Power plant: Prandtl number Precipitation (crystallization) fouling, Precipitation hardening, of stainless steels, Pressure coefficient: Pressure control of condensers, Pressure drop: Pressure gradient: Pressure, specification of in mechanical design to EN13445, Pressure testing, Pressure vessels, principle codes for, Pressurised water reactor, fouling in, Printed circuit heat exchanger, Problem table algorithm, in pinch analysis, Process heaters: Progressive plastic deformation Prolate spheroids, free convective heat transfer from, Promoters, in dropwise condensation, Propadiene: Propane: 1-Propanol: 2-Propanol: Propeller agitator, Property ratio method, for temperature dependent physical property Propionaldehyde: Propionic acid: Propionic anhydride: Proprionitrile: Propyl acetate: Propylamine: Propylbenzene: Propylcyclohexane: Propylcyclopentane: Propylene: 1,3-Propylene glycol: Propylene oxide: Propyl formate: Propyl propionate: Pseudo-boiling in supercritical fluids, Pseudo-film boiling in supercritical fluids, Pseudocritical pressure, Pseudocritical tempertaure, Pugh, S F Pulp and paper industry, fouling of heat exchangers in, Pulsations, use in augmentation of heat transfer, Pulverized fuel water-tube boiler, Pumping, lost work in, Pushkina and Sorokin correlation, for flooding in vertical tubes, Pyramid, free convective heat transfer from, Pyridine:

Index

HEDH
A B C D E F G H I J K L M N O P
Packaged units, specification of, Packing characteristic, in cooling towers, Packings, for cooling towers Packings, for fixed beds: Packinox heat exchanger, Paints, spectral characteristics of reflectance of surfaces treated with, Palen, J W Panchal, C B, Paraffins, normal and isonormal: Paraldehyde: Parallel channel instability, in condensers, Partial boiling in subcooled forced convective heat transfer, Participating media, radiation interaction in, Particle convective component, in heat transfer from fluidized beds, Particle emissivity, Particle Reynolds number in fixed beds, Particles: Particulate fluidization, Particulate fouling, Pass arrangements, in plate heat exchangers, Passes, tube side, Passive methods, for augmentation of heat transfer, passive systems for: PD5500 mechanical design of shell-and-tube heat exchangers to, Peacock, D K, Pearson number, Peclet number Peng-Robinson equation of state, application to hydrocarbons, Penner's rule, in absorption of radiation by gases, Pentachloroethane (Refrigerant 120): Pentadecane: Pentadecene: Pentadiene 1, 2: Pentadiene 1, trans 3: Pentadiene 1, 4: Pentadiene 2-3: Pentafluoroethane (Refrigerant 125) Pentamethylbenzene: Pentane: Pentanoic acid: 1-Pentanol: 1-Pentene: cis-2-Pentene: trans-2-Pentene: Pentylacetate: Pentylbenzene: Pentylcyclohexane: Pentylcyclopentane: Pentylcyclopropane, liquid properties, Perforated fins, in plate fin heat exchangers, Perforated plates, loss coefficients in, Periodic operation, of regenerator, Periodic variations in temperature, thermal conduction in bodies with, PFR correlation, for heat transfer in high fin tube banks, Pharmaceutical industry, fouling of heat exchangers in, Phase change materials, in augmentation of heat transfer, Phase change number, Phase equilibrium: Phase inversion Phase separation, as source of corrosion problems, Phenol: Phenols: Phenylhydrazine: Phonons, in thermal conductivity of solids, Phosgene: Physical properties: Pi theorum, in dimensional analysis, Pinch analysis, for heat exchanger network design, Pioro, I L Pioro, LS, Pipe leads, Piperidine: Pipes, circular: Pipes, noncircular: Piping components: Pitting corrosion, in stainless steels, Planck's constant, Planck's law, for spectral distribution of blackbody radiation, Plane shells, steady-state thermal conduction in, Plastic deformation Plate fin heat exchangers Plate fins, efficiency, Plate heat exchangers: Plate evaporator Plates: Plug flow: Plug flow model, for furnaces, Pneumatic conveyance, Pneumatic conveying dryer, P-NTU method: Polarization, of thermal radiation, Polyglycols, as heat transfer media, Polymers: Pool boiling, Porous surfaces: Port arrangements, in plate heat exchangers, Portable fouling unit, Poskas, P, Postdryout heat transfer: Powders: Power law fluid (non-Newtonian), Power plant: Prandtl number Precipitation (crystallization) fouling, Precipitation hardening, of stainless steels, Pressure coefficient: Pressure control of condensers, Pressure drop: Pressure gradient: Pressure, specification of in mechanical design to EN13445, Pressure testing, Pressure vessels, principle codes for, Pressurised water reactor, fouling in, Printed circuit heat exchanger, Problem table algorithm, in pinch analysis, Process heaters: Progressive plastic deformation Prolate spheroids, free convective heat transfer from, Promoters, in dropwise condensation, Propadiene: Propane: 1-Propanol: 2-Propanol: Propeller agitator, Property ratio method, for temperature dependent physical property Propionaldehyde: Propionic acid: Propionic anhydride: Proprionitrile: Propyl acetate: Propylamine: Propylbenzene: Propylcyclohexane: Propylcyclopentane: Propylene: 1,3-Propylene glycol: Propylene oxide: Propyl formate: Propyl propionate: Pseudo-boiling in supercritical fluids, Pseudo-film boiling in supercritical fluids, Pseudocritical pressure, Pseudocritical tempertaure, Pugh, S F Pulp and paper industry, fouling of heat exchangers in, Pulsations, use in augmentation of heat transfer, Pulverized fuel water-tube boiler, Pumping, lost work in, Pushkina and Sorokin correlation, for flooding in vertical tubes, Pyramid, free convective heat transfer from, Pyridine:
Q R S T U V W X Y Z

Utility Selection

DOI 10.1615/hedhme.a.000124

1.7.5 Utility Selection

A. Introduction

So far we have considered utilities of constant temperature such as steam or essentially constant temperature such as cooling water. For utilities of non-constant temperature (e.g. flue gas, boiler feedwater preheat, etc.) targeting and design become more complex. In this chapter a new tool is discussed, the Grand Composite Curve Linnhoff (1982), Linnhoff (1986), Greenkorn et al. (1978), which is used for both utilities of constant and non-constant temperature. Flue gas, multiple steam levels, boiler feedwater, heat engines, heat pumps, etc., are included in what is a perfectly general procedure.

Consider the heat exchanger network shown in Figure 1 Linnhoff (1986). Figure 1 shows a process flowsheet. The design of the heat recovery system achieves its energy target of 300 units of externally supplied energy. The design provides this heat from a furnace.

Figure 1 A heat exchanger network design which achieves the target. Because the hot utility is a furnace, the fuel required is greater than the heating duty

The designer would like to minimize the fuel consumption by extracting as much heat as possible from the flue gas. This means obtaining as low a temperature as possible in the stack. By lowering the stack temperature, the designer lowers the flowrate of flue gas and hence the quantity of fuel which must be burned. The lowest temperature the flue gas can be taken to is the acid dew point (160 °C in this case). Unfortunately, the furnace coil inlet temperature of 367 °C means that a high stack temperature of 417 °C is being achieved in Figure 1.

... You need a subscriptionOpen in a new tab. to view the full text of the article. If you already have the subscription, please login here