Navigation by alphabet

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
F-correction method: F-factor charts and equations for various heat exchanger configurations, F-factor method: F-type shells: Fabrication: Failure modes of heat exchangers, Falling films, direct contact heat transfer in, Falling film evaporator: Fanno flow, Fans in air-cooled heat exchangers: Fatigue as failure mode of a heat exchanger Fatigue life, of expansion bellows, Fawcett, R Fedor's method, for critical temperature, Fenghour, A Ferritic stainless steels, as material of construction, Fick's law for diffusion, Film boiling: Film model, condenser design by Film temperature, definition of for turbulent flow over flat plate, Films in heat exchangers, Filmwise condensation: Fincotherm, heat transfer medium, Finite-difference equations: Finite difference methods: Finite-element methods: Fins (see also Extended surfaces): Fire-tube boiler, Fired heaters, Fires, room, radiation interaction phenomena in, Firsova, E V, Fixed beds: Fixed tubesheet, shell-and-tube exchangers: Flanges, mechanical design of in heat exchangers, Flash evaporation Flat absorber of thermal radiation, Flat heads: Flat plate: Flat reflector of thermal radiation, Floating head designs for shell-and-tube heat exchangers: Flooded type evaporator, in refrigeration, Flooding phenomena: Flow distribution: Flow-induced vibration, Flow regimes: Flow stream analysis method for segmentally baffled shell and tube heat exchangers, Flue gases, fouling by, Fluid elastic instability as source of flow-induced vibration, Fluid flow, lost work in, Fluid mechanics, Eulerian formulation for, Fluid-to-particle heat transfer in fluidized beds, Fluidized bed dryer: Fluidized bed gravity conveyors, Fluidized beds: Fluids: Fluorine: Fluorobenzene: Fluoroethane (Refrigerant 161): Fluoromethane (Refrigerant 41): Fluted tubes: Flux method, for modeling radiation in furnaces, Flux relationships in heat exchangers, Fogging in condensation Food processing, fouling of heat exchangers in, Forced flow reboilers: Formaldehyde: Formamide: Formic acid: Forster and Zuber correlation for nucleate boiling, Fouling, Foam systems, heat transfer in, Four phase flows, examples, Fourier law for conduction Fourier number (Fo): Frames for plate heat exchangers, France, guide to national practice for mechanical design, Free convection: Free-fall velocity, of particles, Free-stream turbulence, effect on flow over cylinders, Freeze protection of air-cooled heat exchangers, Freezing, of condensate in condensers Fresnel relations in reflection of radiation, Fretting corrosion, Friction factor: Friction multipliers in gas-liquid flow: Friction velocity, definition, Friedel correlation for frictional pressure gradient in straight channels, Froude number: Fuels, properties of, Fuller, R K, Furan: Furfural: Furnaces: Fusion welding, of tubes into tubesheets in shell-and-tube heat exchangers,

Index

HEDH
A B C D E F
F-correction method: F-factor charts and equations for various heat exchanger configurations, F-factor method: F-type shells: Fabrication: Failure modes of heat exchangers, Falling films, direct contact heat transfer in, Falling film evaporator: Fanno flow, Fans in air-cooled heat exchangers: Fatigue as failure mode of a heat exchanger Fatigue life, of expansion bellows, Fawcett, R Fedor's method, for critical temperature, Fenghour, A Ferritic stainless steels, as material of construction, Fick's law for diffusion, Film boiling: Film model, condenser design by Film temperature, definition of for turbulent flow over flat plate, Films in heat exchangers, Filmwise condensation: Fincotherm, heat transfer medium, Finite-difference equations: Finite difference methods: Finite-element methods: Fins (see also Extended surfaces): Fire-tube boiler, Fired heaters, Fires, room, radiation interaction phenomena in, Firsova, E V, Fixed beds: Fixed tubesheet, shell-and-tube exchangers: Flanges, mechanical design of in heat exchangers, Flash evaporation Flat absorber of thermal radiation, Flat heads: Flat plate: Flat reflector of thermal radiation, Floating head designs for shell-and-tube heat exchangers: Flooded type evaporator, in refrigeration, Flooding phenomena: Flow distribution: Flow-induced vibration, Flow regimes: Flow stream analysis method for segmentally baffled shell and tube heat exchangers, Flue gases, fouling by, Fluid elastic instability as source of flow-induced vibration, Fluid flow, lost work in, Fluid mechanics, Eulerian formulation for, Fluid-to-particle heat transfer in fluidized beds, Fluidized bed dryer: Fluidized bed gravity conveyors, Fluidized beds: Fluids: Fluorine: Fluorobenzene: Fluoroethane (Refrigerant 161): Fluoromethane (Refrigerant 41): Fluted tubes: Flux method, for modeling radiation in furnaces, Flux relationships in heat exchangers, Fogging in condensation Food processing, fouling of heat exchangers in, Forced flow reboilers: Formaldehyde: Formamide: Formic acid: Forster and Zuber correlation for nucleate boiling, Fouling, Foam systems, heat transfer in, Four phase flows, examples, Fourier law for conduction Fourier number (Fo): Frames for plate heat exchangers, France, guide to national practice for mechanical design, Free convection: Free-fall velocity, of particles, Free-stream turbulence, effect on flow over cylinders, Freeze protection of air-cooled heat exchangers, Freezing, of condensate in condensers Fresnel relations in reflection of radiation, Fretting corrosion, Friction factor: Friction multipliers in gas-liquid flow: Friction velocity, definition, Friedel correlation for frictional pressure gradient in straight channels, Froude number: Fuels, properties of, Fuller, R K, Furan: Furfural: Furnaces: Fusion welding, of tubes into tubesheets in shell-and-tube heat exchangers,
G H I J K L M N O P Q R S T U V W X Y Z

Fouling Mitigation and Heat Exchangers Cleaning

DOI 10.1615/hedhme.a.000364

3.17 FOULING IN HEAT EXCHANGERS
3.17.8 Fouling mitigation and heat exchanger cleaning

A. Fouling control measures

(a) Physical Mitigation Techniques
(by T. R. Bott)

The removal of deposits from heat exchanger surfaces may be achieved by the application of suitable forces that dislodge the accumulation of unwanted material. In many instances the removal forces are applied through a fluid medium, often it is the process fluid itself that provides the means of applying the removal force. In other situations, deposits are prevented from forming or are knocked from the surface, by a solid agent. Some of the techniques lend themselves to on line cleaning i.e. the process is continued while the mitigation takes place. Other techniques may require that the plant is shut down, or at any rate the particular heat exchanger in question is taken out of service for cleaning. Many of the techniques are not universal and have been developed to meet particular requirements and processes.

I. Circulation of Sponge Rubber Balls

In the power industry the maintenance of steam condenser performance is essential to maintain generation efficiency and competitiveness. In order to maximize the output from the turbine generation set, it is necessary to ensure that the lowest possible pressure in the steam condenser is retained. Condensation is achieved by the circulation of cooling water through the tubes of very large shell and tube exchangers. The system may be once through or recirculating. Since in general, the water system is open to the atmosphere it is likely to become contaminated with microorganisms and particulate matter that accumulate in the condensers where the conditions favor the formation of biofilms (see Section 358). In addition, scale formation is possible, where the concentration of dissolved solids reaches saturation levels (due to evaporative cooling of the water). In addition particulate products of corrosion may also accumulate on the surface, or the surface itself may become corroded. The consequence, if mitigation techniques are not applied, is the formation of slime layer (due to microbial colonization) in conjunction with particulate deposition, products of corrosion and crystal formation where conditions are suitable.

... You need a subscriptionOpen in a new tab. to view the full text of the article. If you already have the subscription, please login here