Navigation by alphabet

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Hagen-Poiseuille law Hagen-Rubens relation, between electrical and optical constants, Hall Taylor, N S, Halogenated hydrocarbons: Handley and Heggs equation for fixed bed pressure drop, Hankinson and Thomson method, for liquid density: Hardening (precipative) of stainless steels, Hardwick, R, Harris, D, Hausen equation for developing laminar flow, Hays, G F Headers in shell-and-tube heat exchangers, Heads, in heat exchangers: Heat and mass transfer: Heat exchanger design, introduction, Heat exchangers: Heat of vaporisation (see Enthalpy of vaporisation), of pure substances Heat pipes: Heat pumping, relation to heat exchanger network design, Heat storage (see Regenerators and thermal energy storage) entropy generation in, Heat transfer: Heat transfer coefficient: Heat transfer media, Heat transfer salt, Heat transfer regimes: Heat of vaporization, Heated cavity reflectometer, Heating media, for reboilers, Heavy water, physical properties of, Heggs, P J, Helical coils of circular cross section: Helical coils of rectangular cross section, Helical inserts, for enhancement of heat transfer in boiling, Helium: Helmholtz reciprocity principle, in radiative heat transfer, Henry, J A R, Henry-Fauske model, for critical two-phase flow, Henry's law, for partial pressure, Heptadecane: Heptadecene: Heptane: 1-Heptanol: 1-Heptene: Herman, K W, Hermes, C L L, Heterogeneous conveyance in horizontal pipes, Heterogeneous nucleation in boiling, Hewitt, G F Hexachloroethane (Refrigerant 116): Hexacyclopentane, superheated vapor properties, Hexadecane: Hexadecene: 1,5-Hexadiene: Hexagonal cells, in free convection, Hexamethylbenzene: Hexane: Hexanoic acid: 1-Hexanol: 1-Hexene: Hexylbenzene: Hexylcyclohexane: Hexylcyclopentane, Hicks equation, for fixed-bed pressure drop, High pressure closures, ASME VIII code guidance for, High-chrome steels, thermal and mechanical properties, High-finned tubes, correlations for single-phase heat transfer in flow over, Hills, P D Hohlraum cavity, Holdup, in liquid-liquid flow, Holland, guide to national practice for mechanical design of heat exchangers, Homogeneous condensation (fog formation), Homogeneous model: Homogeneous nucleation: Honeycombs: Hopkins, D, Horizontal condensers: Horizontal cylinders: Horizontal layers, of fluid, free convection heat transfer in, Horizontal pipes: Horizontal shell-side evaporator, Horizontal surfaces: Horizontal thermosiphon reboilers: Horizontal tube-side evaporator, Horizontal tubes: Hottel's rule, in absorption of radiation by gases, Hsu criterion, for onset of nucleate boiling, Hybrid cooling towers, Hydraulic conveyance: Hydraulic expansion, of tubes into tube sheets in shell-and-tube heat exchangers, Hydraulic turbine, lost work in, Hydraulic resistance, in flow of supercritical fluids, Hydraulically smooth surface, Hydrazine: Hydrocarbons: Hydrodynamic entrance length, in single-phase flow in ducts, Hydrogen: Hydrogen bromide: Hydrogen chloride: Hydrogen cyanide: Hydrogen fluoride: Hydrogen iodide: Hydrogen peroxide: Hydrogen sulfide: Hydrostatic testing of shell-and-tube heat exchangers, Hysteresis:

Index

HEDH
A B C D E F G H
Hagen-Poiseuille law Hagen-Rubens relation, between electrical and optical constants, Hall Taylor, N S, Halogenated hydrocarbons: Handley and Heggs equation for fixed bed pressure drop, Hankinson and Thomson method, for liquid density: Hardening (precipative) of stainless steels, Hardwick, R, Harris, D, Hausen equation for developing laminar flow, Hays, G F Headers in shell-and-tube heat exchangers, Heads, in heat exchangers: Heat and mass transfer: Heat exchanger design, introduction, Heat exchangers: Heat of vaporisation (see Enthalpy of vaporisation), of pure substances Heat pipes: Heat pumping, relation to heat exchanger network design, Heat storage (see Regenerators and thermal energy storage) entropy generation in, Heat transfer: Heat transfer coefficient: Heat transfer media, Heat transfer salt, Heat transfer regimes: Heat of vaporization, Heated cavity reflectometer, Heating media, for reboilers, Heavy water, physical properties of, Heggs, P J, Helical coils of circular cross section: Helical coils of rectangular cross section, Helical inserts, for enhancement of heat transfer in boiling, Helium: Helmholtz reciprocity principle, in radiative heat transfer, Henry, J A R, Henry-Fauske model, for critical two-phase flow, Henry's law, for partial pressure, Heptadecane: Heptadecene: Heptane: 1-Heptanol: 1-Heptene: Herman, K W, Hermes, C L L, Heterogeneous conveyance in horizontal pipes, Heterogeneous nucleation in boiling, Hewitt, G F Hexachloroethane (Refrigerant 116): Hexacyclopentane, superheated vapor properties, Hexadecane: Hexadecene: 1,5-Hexadiene: Hexagonal cells, in free convection, Hexamethylbenzene: Hexane: Hexanoic acid: 1-Hexanol: 1-Hexene: Hexylbenzene: Hexylcyclohexane: Hexylcyclopentane, Hicks equation, for fixed-bed pressure drop, High pressure closures, ASME VIII code guidance for, High-chrome steels, thermal and mechanical properties, High-finned tubes, correlations for single-phase heat transfer in flow over, Hills, P D Hohlraum cavity, Holdup, in liquid-liquid flow, Holland, guide to national practice for mechanical design of heat exchangers, Homogeneous condensation (fog formation), Homogeneous model: Homogeneous nucleation: Honeycombs: Hopkins, D, Horizontal condensers: Horizontal cylinders: Horizontal layers, of fluid, free convection heat transfer in, Horizontal pipes: Horizontal shell-side evaporator, Horizontal surfaces: Horizontal thermosiphon reboilers: Horizontal tube-side evaporator, Horizontal tubes: Hottel's rule, in absorption of radiation by gases, Hsu criterion, for onset of nucleate boiling, Hybrid cooling towers, Hydraulic conveyance: Hydraulic expansion, of tubes into tube sheets in shell-and-tube heat exchangers, Hydraulic turbine, lost work in, Hydraulic resistance, in flow of supercritical fluids, Hydraulically smooth surface, Hydrazine: Hydrocarbons: Hydrodynamic entrance length, in single-phase flow in ducts, Hydrogen: Hydrogen bromide: Hydrogen chloride: Hydrogen cyanide: Hydrogen fluoride: Hydrogen iodide: Hydrogen peroxide: Hydrogen sulfide: Hydrostatic testing of shell-and-tube heat exchangers, Hysteresis:
I J K L M N O P Q R S T U V W X Y Z

Design Example: Floating-Head Heat Exchanger, TEMA Type AJS

DOI 10.1615/hedhme.a.000423

4.3 SHELL-AND-TUBE DESIGN CODES
4.3.6 Design examples: Floating-head and fixed tubesheet exchangers

A. Introduction

The mechanical design in this section is for a floating-head shell-and-tube exchanger (TEMA type AJS). For comparison, the fixed tubesheet design of a TEMA type AEL exchanger is carried out in Section 423H. They conform to the Standards of Tubular Exchanger Manufacturers Association (7th ed., 1988) and the ASME Boiler and Pressure Vessel Code (Section VIII, Division 1, 1989). The calculations are in SI units.

(a) Specifications

TEMA classR
Design pressure shell side2,000 kPa
Design pressure tube side500 kPa
Design temperature shell side100 °C
Design temperature tube side150 °C
Corrosion allowance shell side3 mm
Corrosion allowance tube side3 mm
Shell inside diameter635 mm
Channel inside diameter635 mm
Shell inlet nozzle nominal pipe size203 mm
Shell outlet nozzles (2 off) nominal pipe152 mm
Mean shell metal temperature100 °C
Mean tube metal temperature120 °C
Tube-side inlet nozzle nominal pipe size305 mm
Tube-side outlet nozzle nominal pipe size 305 mm
Number of tubes468
Tube outside diameter19.05 mm
Tube wall thickness (14 BWG)2.11 mm
Tube length4,060 mm
Tube pitch23.812 mm
Tube pattern (as defined by TEMA R-2.4)30°
Number of tube passes4
Number of baffles-segmental9
Baffle spacing380 mm
Baffle cut25%
Impingement protectionNone
Weld examinationSpot

... You need a subscriptionOpen in a new tab. to view the full text of the article. If you already have the subscription, please login here