Navigation by alphabet

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Damage, sources of heat exchangers Damkohler number: Damping: Davis and Anderson criterion, for onset of nucleate boiling, Decal, heat transfer medium, Decane: 1-Decanol: 1-Decene: Degradation temperature, of polymers, Demisters, wire mesh, for multistage flash evaporators, Dengler and Addoms correlation, for forced convective heat transfer in two-phase flow, Density: Deposition of droplets in annular flow Deposition in fouling, Desalination plants: Desuperheaters for use in association with evaporators, Developing flow in ducts: Dew-poin corrosion, Diathermanous fluid, 1,1-Dibromoethane: Dibromomethane: 1,2-Dibromotetrafluoroethane (Refrigerant 114B2): Dibutylamine: Dibutyl ether: Dichloroacetic acid: o-Dichlorobenzene: Dichlorodifluoromethane (see Refrigerant 12) 1,1-Dichloroethane (Refrigerant 150a): 1,2-Dichloroethane (Refrigerant 150): 1,1-Dichloroethylene: cis-1,2-Dichloroethylene: trans-1,2-Dichloroethylene: Dichlorofluoromethane (see Refrigerant 21) Dichloromethane (Refrigerant 30): 1,2-Dichlorotetrafluoroethane (Refrigerant 114) 1,2,3-Dichlorotrifluoroethane (Refrigerant 123) Dielectric constant, of water, Diethylamine: n,n-Diethylaniline: Diethylene glycol: Diethyl ether: Diethyl ketone: Diethylsulfide: Differential condensation: Differential formulations for nonisothermal gas radiation, Differential resistance term in heat exchanger design, Differential vector operators in heat conduction, Diffraction models for radiative heat transfer from surfaces, Diffuse surfaces, radiative heat transfer between, Diffuse wall passages, radiative heat transfer in, Diffusers, single-phase flow and pressure drop in, Diffusion, in multi-component condensation, n,n-Diffusion coefficients: 1,1-Difluoroethane (Refrigerant 152a): Difluoromethane (Refrigerant 32): Diiodomethane: Diisobutylamine: Diisopropylamine: Diisopropylether: Dimensional analysis: Dimensionless groups: Dimethylacetylene: Dimethylamine: Dimethylaniline: 2,2-Dimethylbutane: 2,3-Dimethylbutane: 1,1-Dimethylcyclopentane: Dimethylether: Dimethylketone: 2,2-Dimethylpropane (neopentane): Dimethylsulfide: Dimpled surfaces, heat exchangers with, 1,4-Dioxane: Diphenyl: Diphenylamine: Diphenylether: Diphenylmethane: Dipropyl ether: Diisopropyl ether: Dipropyl ketone: Direct contact heat exchangers Direct contact heat transfer, Direct numerical simulation, of turbulence, Dirichlet boundary condition, finite difference method, Dished heads: Discretization in numerical analysis: Disk-and-doughnut baffled heat exchangers, Disks, free convective heat transfer from inclined, Dispersants, for fouling control, Dispersed flow (liquid-liquid), Dissipation of turbulent energy, Distillation: Distribution: Dittus-Boelter equation, for single-phase forced convective heat transfer, Dividing flow, loss coefficients in, Dodecane: 1-Dodecene: Donohue method, for shell-side heat transfer in shell-and-tube heat exchangers, Double-pipe heat exchangers: Double segmental baffled heat exchangers, Downward facing surfaces, free convective heat transfer from, Downward flow in vertical tubes, flow patterns in gas/liquid, Dowtherm A: Dowtherm J: Dowtherms, as heat transfer media, Drag coefficient: Drag force: Drag reduction, Drainage, of condensate, Dreitser, G, Drift flux model for two-phase flows, Drogemuller, P, Droplets: Dropwise condensation Dry wall desuperheating (in condensation), Dryers: Drying loft, Drying rates, prediction of, Dryout: Ducts, single-phase fluid flow and pressure drop in, Duplex stainless steels, Durand correlation for heterogeneous conveyance in solid/liquid flow, Dynamically stable foam, Dyphyl, heat transfer media, Dzyubenko, B,

Index

HEDH
A B C D
Damage, sources of heat exchangers Damkohler number: Damping: Davis and Anderson criterion, for onset of nucleate boiling, Decal, heat transfer medium, Decane: 1-Decanol: 1-Decene: Degradation temperature, of polymers, Demisters, wire mesh, for multistage flash evaporators, Dengler and Addoms correlation, for forced convective heat transfer in two-phase flow, Density: Deposition of droplets in annular flow Deposition in fouling, Desalination plants: Desuperheaters for use in association with evaporators, Developing flow in ducts: Dew-poin corrosion, Diathermanous fluid, 1,1-Dibromoethane: Dibromomethane: 1,2-Dibromotetrafluoroethane (Refrigerant 114B2): Dibutylamine: Dibutyl ether: Dichloroacetic acid: o-Dichlorobenzene: Dichlorodifluoromethane (see Refrigerant 12) 1,1-Dichloroethane (Refrigerant 150a): 1,2-Dichloroethane (Refrigerant 150): 1,1-Dichloroethylene: cis-1,2-Dichloroethylene: trans-1,2-Dichloroethylene: Dichlorofluoromethane (see Refrigerant 21) Dichloromethane (Refrigerant 30): 1,2-Dichlorotetrafluoroethane (Refrigerant 114) 1,2,3-Dichlorotrifluoroethane (Refrigerant 123) Dielectric constant, of water, Diethylamine: n,n-Diethylaniline: Diethylene glycol: Diethyl ether: Diethyl ketone: Diethylsulfide: Differential condensation: Differential formulations for nonisothermal gas radiation, Differential resistance term in heat exchanger design, Differential vector operators in heat conduction, Diffraction models for radiative heat transfer from surfaces, Diffuse surfaces, radiative heat transfer between, Diffuse wall passages, radiative heat transfer in, Diffusers, single-phase flow and pressure drop in, Diffusion, in multi-component condensation, n,n-Diffusion coefficients: 1,1-Difluoroethane (Refrigerant 152a): Difluoromethane (Refrigerant 32): Diiodomethane: Diisobutylamine: Diisopropylamine: Diisopropylether: Dimensional analysis: Dimensionless groups: Dimethylacetylene: Dimethylamine: Dimethylaniline: 2,2-Dimethylbutane: 2,3-Dimethylbutane: 1,1-Dimethylcyclopentane: Dimethylether: Dimethylketone: 2,2-Dimethylpropane (neopentane): Dimethylsulfide: Dimpled surfaces, heat exchangers with, 1,4-Dioxane: Diphenyl: Diphenylamine: Diphenylether: Diphenylmethane: Dipropyl ether: Diisopropyl ether: Dipropyl ketone: Direct contact heat exchangers Direct contact heat transfer, Direct numerical simulation, of turbulence, Dirichlet boundary condition, finite difference method, Dished heads: Discretization in numerical analysis: Disk-and-doughnut baffled heat exchangers, Disks, free convective heat transfer from inclined, Dispersants, for fouling control, Dispersed flow (liquid-liquid), Dissipation of turbulent energy, Distillation: Distribution: Dittus-Boelter equation, for single-phase forced convective heat transfer, Dividing flow, loss coefficients in, Dodecane: 1-Dodecene: Donohue method, for shell-side heat transfer in shell-and-tube heat exchangers, Double-pipe heat exchangers: Double segmental baffled heat exchangers, Downward facing surfaces, free convective heat transfer from, Downward flow in vertical tubes, flow patterns in gas/liquid, Dowtherm A: Dowtherm J: Dowtherms, as heat transfer media, Drag coefficient: Drag force: Drag reduction, Drainage, of condensate, Dreitser, G, Drift flux model for two-phase flows, Drogemuller, P, Droplets: Dropwise condensation Dry wall desuperheating (in condensation), Dryers: Drying loft, Drying rates, prediction of, Dryout: Ducts, single-phase fluid flow and pressure drop in, Duplex stainless steels, Durand correlation for heterogeneous conveyance in solid/liquid flow, Dynamically stable foam, Dyphyl, heat transfer media, Dzyubenko, B,
E F G H I J K L M N O P Q R S T U V W X Y Z

Nozzle Loads

DOI 10.1615/hedhme.a.000424

4.3 SHELL-AND-TUBE DESIGN CODES
4.3.7. Nozzle Loads

A. Introduction

Section 410, Section 419J, and Section 423I deal with various methods of nozzle reinforcement for pressure conditions. Section 419J also makes reference to British Standard 5500 (British Standards Institution, 1991) as the only code giving design rules for external loads on nozzles, and Section 404C briefly discusses the analytical basis. (However, many designers have also used the guidance given in Welding Research Council Bulletin 107 (K.R. Wichman et al., 1965) to establish stresses arising from nozzle loads).

Local loads on nozzles can arise from dead weight, pressure and thermal effects, and the geometry of the attached piping system. Loads may be normal or tangential to the shell, and bending and/or twisting moments may also be present.

In the following the scope of the approach in BS 5500 is reviewed, followed by a design example covering calculations for one of the nozzles of the heat exchanger described in Section 423 subject to arbitrary forces and moments. Symbols, nomenclature, etc. are in accordance with BS 5500 and are not defined in the text. Reference should be made to BS 5500, which must be available when studying this section.

B. Cylindrical shells

... You need a subscriptionOpen in a new tab. to view the full text of the article. If you already have the subscription, please login here